室内用3次元自己位置推定論文が掲載されました

Thuan Bui Bachさんの論文がISPRS Journal of Photogrammetry and Remote Sensingに掲載されました。ISPRS Journal of Photogrammetry and Remote SensingはImpact Factor 8.979(2022年現在)と、とても影響力のあるトップジャーナルです。論文は、2Dカメラデータを用いた室内用3次元自己位置推定に関する内容で、提案手法が既存の手法より高い精度と性能であることを比較実験で証明しています。ソースコードも公開されているのでご興味のある方は下記の情報もご覧ください。

FeatLoc: Absolute pose regressor for indoor 2D sparse features with simplistic view synthesizing
Thuan Bui Bach, Tuan Tran Dinh, Joo-Ho Lee
ISPRS Journal of Photogrammetry and Remote Sensing, Volume 189, 2022, Pages 50-62, ISSN 0924-2716,
https://doi.org/10.1016/j.isprsjprs.2022.04.021.

Abstract: Precise localization using visual sensors is a fundamental requirement in many applications, including robotics, augmented reality, and autonomous systems. Traditionally, the localization problem has been tackled by leveraging 3D-geometry registering approaches. Recently, end-to-end regressor strategies using deep convolutional neural networks have achieved impressive performance, but they do not achieve the same performance as 3D structure-based methods. To some extent, this problem has been tackled by leveraging the beneficial properties of sequential images or geometric constraints. However, these approaches can only achieve a slight improvement. In this work, we address this problem for indoor scenarios, and we argue that regressing the camera pose using sparse feature descriptors could significantly improve the pose regressor performance compared with deep single-feature-vector representation. We propose a novel approach that can directly consume sparse feature descriptors to regress the camera pose effectively. More importantly, we propose a simplistic data augmentation procedure to exploit the sparse descriptors of unseen poses, leading to a remarkable enhancement in the generalization performance. Lastly, we present an extensive evaluation of our method on publicly available indoor datasets. Our FeatLoc achieves 22% and 40% improvements in translation errors on 7-Scenes and 12-Scenes relatively, compared with recent state-of-the-art absolute pose regression-based approaches. Our codes are released at https://github.com/ais-lab/FeatLoc.
Keywords: Visual localization; Sparse features; Absolute pose regression

DNNと歩行のサーベイ論文が掲載されました

松下由女さんのサーベイ論文がOxford Academy社のJournal of Computational Design and Engineeringに掲載されました。34ページにわたる大作で、近年の機械学習を用いた医療目的の歩行研究を全部網羅しています。医療系の方と機械学習の研究者が歩行というキーワードで歩み寄れる論文です。ご興味のある方はぜひお読みください。Open Accessなので誰もが読めます。

Recent use of deep learning techniques in clinical applications based on gait: a survey

イノベーションジャパン2020に参加しています!

国立研究開発法人科学技術振興機構(JST)と文部科学省の共催でイノベーション・ジャパン大学見本市を開催しています。イノベーション・ジャパン大学見本市とは、全国の大学等の技術シーズを一堂に集め企業へ紹介し、産学連携の推進、技術移転のきっかけとなる場を提供することにより、産業活動の活性化を目指す産学連携マッチングイベントです。大学等における研究シーズと産業界のニーズをマッチングさせるイベントとしては国内最大規模になります。

本イベントに立命館大学を代表してAISLABの研究テーマの一つであるMobile Moduleで参加しています。詳細は以下のリンクをご覧ください。

https://ij2020online.jst.go.jp/exhibitor/un20200422.html

ROBOMECH2020に学生6名が参加しました

2020/5/28,29の2日間に渡って開催されたROBOMECH2020のオンラインポスターセッションにM1の学生6名が参加しました!

今年は新型コロナウイルスの影響でオンラインでの開催となり学会デビューがオンラインとなってしまいましたが、Facebookを通じて他の参加者の皆様の研究をじっくりみることができました!